Estimation of Land Surface Temperature through Blending MODIS and AMSR-E Data with the Bayesian Maximum Entropy Method

نویسندگان

  • Xiaokang Kou
  • Lingmei Jiang
  • Yanchen Bo
  • Shuang Yan
  • Linna Chai
چکیده

Land surface temperature (LST) plays a major role in the study of surface energy balances. Remote sensing techniques provide ways to monitor LST at large scales. However, due to atmospheric influences, significant missing data exist in LST products retrieved from satellite thermal infrared (TIR) remotely sensed data. Although passive microwaves (PMWs) are able to overcome these atmospheric influences while estimating LST, the data are constrained by low spatial resolution. In this study, to obtain complete and high-quality LST data, the Bayesian Maximum Entropy (BME) method was introduced to merge 0.01 ̋ and 0.25 ̋ LSTs inversed from MODIS and AMSR-E data, respectively. The result showed that the missing LSTs in cloudy pixels were filled completely, and the availability of merged LSTs reaches 100%. Because the depths of LST and soil temperature measurements are different, before validating the merged LST, the station measurements were calibrated with an empirical equation between MODIS LST and 0~5 cm soil temperatures. The results showed that the accuracy of merged LSTs increased with the increasing quantity of utilized data, and as the availability of utilized data increased from 25.2% to 91.4%, the RMSEs of the merged data decreased from 4.53 ̋C to 2.31 ̋C. In addition, compared with the filling gap method in which MODIS LST gaps were filled with AMSR-E LST directly, the merged LSTs from the BME method showed better spatial continuity. The different penetration depths of TIR and PMWs may influence fusion performance and still require further studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Soil Moisture Estimation with a Dual Ensemble Kalman Smoother by Jointly Assimilating AMSR-E Brightness Temperature and MODIS LST

Uncertainties in model parameters can easily result in systematic differences between model states and observations, which significantly affect the accuracy of soil moisture estimation in data assimilation systems. In this research, a soil moisture assimilation scheme is developed to jointly assimilate AMSR-E (Advanced Microwave Scanning Radiometer-Earth Observing System) brightness temperature...

متن کامل

E-Bayesian Approach in A Shrinkage Estimation of Parameter of Inverse Rayleigh Distribution under General Entropy Loss Function

‎Whenever approximate and initial information about the unknown parameter of a distribution is available, the shrinkage estimation method can be used to estimate it. In this paper, first the $ E $-Bayesian estimation of the parameter of inverse Rayleigh distribution under the general entropy loss function is obtained. Then, the shrinkage estimate of the inverse Rayleigh distribution parameter i...

متن کامل

Estimating Daily Maximum and Minimum Land Air Surface Temperature Using MODIS Land Surface Temperature Data and Ground Truth Data in Northern Vietnam

This study aims to evaluate quantitatively the land surface temperature (LST) derived from MODIS (Moderate Resolution Imaging Spectroradiometer) MOD11A1 and MYD11A1 Collection 5 products for daily land air surface temperature (Ta) estimation over a mountainous region in northern Vietnam. The main objective is to estimate maximum and minimum Ta (Ta-max and Ta-min) using both TERRA and AQUA MODIS...

متن کامل

An estimation of the temperature of Lut desert using MODIS sensor data

     Temperature is considered as the basic element of climate and also the environmental limiting factor in LutDesert. In this research, in order to identify the temperature of Lut Desert located in east of central Iran, using remote sensing data, six series of MODIS sensor images related to June 24th & December 23rd 2002, and also January 22nd, March 22nd, June 22nd & September 24th 2003 were...

متن کامل

Evaluation of AMSR-E-Derived Soil Moisture Retrievals Using Ground-Based and PSR Airborne Data during SMEX02

A Land Surface Microwave Emission Model (LSMEM) is used to derive soil moisture estimates over Iowa during the Soil Moisture Experiment 2002 (SMEX02) field campaign, using brightness temperature data from the Advanced Microwave Sounding Radiometer (AMSR)-E satellite. Spatial distributions of the near-surface soil moisture are produced using the LSMEM, with data from the North American Land Data...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016